



# Stability of Converter-Based Power Systems

Jian Sun jsun@rpi.edu



#### Outline

- Power Electronics in Power Systems
- Characteristics of Machines vs. Converters
- Converter-Based Power System Stability
- Small-Signal Sequence Impedance Theory and Applications
- Summary and Future Development

#### Power Electronics in Power Systems





JSun 11-4-2020

#### Power Electronics in Power Systems



- Power Electronics is the Key to These New Developments
- 100% Renewable  $\rightarrow$  >100% Converter-Based Power System

#### **Converter-Based Power System**





#### Machines (& Transformers) vs. Converters

• Slow or No Control

• Fast Control is Essential



REPENSI (E TRECE EN SE TE

#### Machines (& Transformers) vs. Converters

• Overloading Comes Free

• Overloading at High Cost





RECEIRA (DIRECTERICAL CONT

# Power System Stability



Frequency (Hz)

### **Converter-Based Power System Stability**



Frequency (Hz)

# **EMT Stability**

- Study of System Stability in the EMT Frequency Range Requires EMT Models
  - Fundamental-Frequency Models cannot Describe Fast Control & Dynamics
- EMT Simulation is a Useful Tool but Simulation is not Enough
- Analytical and Small-Signal Methods are Required for General Stability Study and System Design → Small-Signal EMT Models
- Direct Linearization of EMT Models Leads to Linear Time Periodic Models That cannot be Handled by Practical Control Methods

 $[x(t) + \Delta x][y(t) + \Delta y] = x(t)y(t) + x(t) \cdot \Delta y + y(t) \cdot \Delta x$ 

#### Harmonic Linearization

- Linearization Along a Periodic Operation Trajectory (Harmonic)
- Frequency-Domain Models Small-Signal Sequence Impedances

| Perturbation Method               | Domain    | Perturbation                                                                                                                        |
|-----------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Amplitude (& Phase)<br>Modulation | Time      | $[V_r + \Delta v_r(t)] \cos \omega_1 t - [V_i + \Delta v_i(t)] \sin \omega_1 t$                                                     |
|                                   | Frequency | $[V_r + \Delta V_r \cos(\omega_p t + \varphi_r)] \cos \omega_1 t - [V_i + \Delta V_i \cos(\omega_p t + \varphi_i)] \sin \omega_1 t$ |
| Superimposed<br>Harmonic          | Time      | $V_1 \cos(\omega_1 t + \varphi_1) + \Delta v(t)$                                                                                    |
|                                   | Frequency | $V_1 \cos(\omega_1 t + \varphi_1) + \Delta V_p \cos(\omega_p t + \varphi_p)$                                                        |





# Impedance-Based System Stability Theory



$$I_g(s) = \frac{I_c(s)/Z_g(s)}{\frac{1}{Z_c(s)} + \frac{1}{Z_g(s)}} - \frac{V_g(s)}{Z_c(s) + Z_g(s)} = \left[ \frac{I_c(s) - \frac{V_g(s)}{Z_c(s)}}{\frac{1}{Z_c(s)}} \right] \cdot \frac{1}{1 + \frac{Z_g(s)}{Z_c(s)}}$$

- System Modeling Based on Impedance
- Converter-Grid Forms a Feedback Loop by Virtue of Impedance
- Stability Requires the Resulting Effective Loop Gain to Satisfy Nyquist Criterion
- System is Stable if both **Positive and Negative Sequence** Subsystems are Stable

# Type-III Turbine with HVDC Converter



RECEIPT APROCESSION APR

#### Offshore HVDC Converter & Cable Network



HERRICH ALTRECEBURG ALTR

JSun 11-4-2020

#### HVDC Converter Resonance with Grid



reteenst Winebeanst Win

# **Research Summary**

- Development of Analytical Impedance Models
  - PV Inverters; Type III & Type IV Turbines
  - Classical HVDC, MMC-Based HVDC & FACTS
- Impedance-Based System Stability Studies
  - PV Inverters and Wind Turbines Connected to Weak Grids
  - Offshore Wind Farms with HVDC Transmission
  - HVDC Converters for Bulk Power Transmission
  - Multi-Terminal HVDC
- Damping of Resonance and System Stabilization

#### **Converter-Based Power System Testbed**



RECEIPT APROCESSION APR

JSun 11-4-2020

# **Applications and Practical Development**

- Root Cause Analysis & Solutions to System Resonances
  - German (TenneT) North Sea Wind Farms with HVDC 2014-2015
  - Hami (China State Grid) Renewable Development Zone 2015-2016
  - Facebook Data Center Power Systems 2017-2018



# **Applications and Practical Development**

- Root Cause Analysis & Solutions to System Resonances
  - German North Sea Wind Farms with HVDC 2014-2015
  - Hami (China State Grid) Renewable Development Zone 2015-2016
  - Facebook Data Center Power Systems 2017-2018
- New Grid Codes for Renewable Energy and HVDC Development
- Impedance-Based Specifications; Measurement and Verification



#### Summary and Future Development

- Converters are Very Different from Machines
- Converter-Based Power Systems Face New Stability Challenges
  - Require New Modeling and System Analysis Methods
- Frequency-Domain Methods Based on Small-Signal Sequence Impedances
- Large-Signal and Transient Stability; Fault and Protection

| Characteristics   | Small-Signal Stability | Large-Signal Stability |
|-------------------|------------------------|------------------------|
| Fast Control      |                        |                        |
| Overload Capacity |                        |                        |



Prof. Jian Sun Rensselaer Polytechnic Institute 110 8<sup>th</sup> Street, Troy NY 12180

jsun@rpi.edu

